AXIOM

Scaling data-rich applications on Ethereum with Axiom

Smart contracts today are data-starved

Current contract state Historical transaction and state

To preserve decentralization, smart contracts today cannot access history

Developers face painful data tradeoffs

e Store more data in state e Use trusted oracle
e Imposes costs on every user e Introduces additional trust
e Limited scale due to gas costs assumptions on users

e Limited scale due to verification
of trust assumptions

Scaling on-chain data access today or reduces security

AXIOM

How do we scale data access and compute for
smart contracts in an application-specific way?

Blockchains offer a new way to access data

[Past Block } Current Block

Ethereum state,
transactions,

receipts

We can access on-chain history with cryptography, not consensus

How does cryptographic data access work?

Past Block] Current Block
J Keccak chain of

block headers

Merkle-Patricia
trie proof

Ethereum state,
transactions,

receipts

Accessing history natively in the EVM is prohibitively expensive

Axiom makes historic data access practical with ZK
é)

Past Block] Current Block
J Keccak chain of

block headers

Merkle-Patricia
trie proof

Ethereum state,
transactions,
receipts

Check in ZK proof
_ Proot)

Proving data reads in ZK enables scale and composition

AXIOM

Axiom: The ZK Coprocessor for Ethereum

Smbmbmbmbmsms

N Sy
. e &
L) ., N
% Rty
N RN
Submit query from Verify result on-chain
smart contract with ZK proof
Read historic Perform verified

on-chain data compute

Every result from Axiom has security
cryptographically equivalent to Ethereum

AXIOM

Axiom enables arbitrary on-chain async calls

Trustlessly interoperate with existing dapps
é)

Read historic
on-chain data

J
AXIOM

AXIOM

Axiom enables arbitrary on-chain async calls

Compute without blockchain VM limits
é)

Perform verified
compute

_ .
AXIOM

AXIOM

How Axiom Works

Axiom’s architecture for reading on-chain history

(N
Keccak chain of

block headers
Merkle mountain range]
{ of all block hashes J g Current Block

A L
Maintain with ZK)

Merkle-Patricia
trie proofs

Ethereum state,
transactions, receipts

We cache block hashes back to genesis in a Merkle mountain range

AXIOM

Aggregating Historical Block Headers

/‘

AXIOM

Aggregating Historical Block Headers

Parallelize:

AXIOM

Axiom’s architecture for reading on-chain history

-

_

~

|

Merkle mountain range]
of all block hashes J

Merkle-Patricia

trie proofs

A

|

Ethereum state,
transactions, receipts

J Prove with ZK g
_

. Current Block

Axiom can prove any combination of blocks, addresses, and storage slots.

AXIOM

What data does Axiom prove?

block n+2

block n+3

block n
-=-| blockn-1 [-| block n+1
|
| | | |
account account account account 0x1234
0x0001 0x0002 0x0003

. mainnet alpha

. experimental build

Axiom for Developers

Installation

e To prove data that we'll eventually use in a contract, we first use the SDK to

build a Query which contains all of the different pieces of data that we want
to prove.

e Install @axiom-crypto/core and other useful packages:

NPM

npm i @axiom-crypto/core ethers

!

YARN

yarn add @axiom-crypto/core ethers

PNPM

pnpm i @axiom-crypto/core ethers

What can we prove?

Block Data Account Data

e block number e Dblock number

e block hash e address

e transactions root ® nonce
(experimental) e balance

e receiptsroot e storage root
(experimental) e code hash

Storage Data

block number
address

slot number
slot value

What can we prove? (Experimental)

e Install @axiom-crypto/experimental with your favorite package manager

Transaction Data Receipt Data

e nonce e status

e maxPriorityFeePerGas e cumulativeGas
e maxFeePerGas e logsBloom

e gasLimit e logs

o to o address

e value o topics

e data o data

e Vrs IERC20.s0l

interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);

An example

e | want to create a contract that checks that a user was “active” during the
previous bear market and if so, let them mint an NFT:
o QOur custom “bear market”: period of low activity and prices between Aug
10, 2018 (block 6120000) to July 10, 2020 (block 10430000)
e Use an account proof to check the difference in an account's nonce at two
different block numbers

@ Ethereum / U.S. Dollar - 1D - BITSTAMP o H L c 2200.0

16
20000

17 TradingView

= o laf ¢ s 8 3 883 sp.
T ® g 2 28 S

Setup

Create a config object and create a new Axiom instance from it:

example.ts |

import { Axiom, AxiomConfig } from '@axiom-crypto/core';
import { ethers } from 'ethers';

const config: AxiomConfig = {
providerUri,
version: "v1'",
chainId: 5,
mock: true,
+s

const ax = new Axiom(config);

Overview of steps

Build Query
(Typescript SDK)

Submit Query
(ethers.js)

Wait for Proof

Parse Proof
(Typescript SDK)

Validate Proof
(Solidity)

Building a Query

Build Query | | Submit Query | | Wait for Proof | | Parse Proof

| | Validate Proof

Create a new QueryBuilder object by calling newQueryBuilder on the Axiom

instance, then append data to it:

example.ts |

const queryData = [
{
blockNumber: 6120000,
address: "0Oxd8da6bf26964af9d7eed9e03e53415d37aa96045", // vitalik.eth
b {
blockNumber: 10430000,
address: "0xd8dabbf26964af9d7eed9e03e53415d37aa96045", // replace both of these with your address
}
13

const gb = ax.newQueryBuilder();

await gb.append(queryDatal[0]);

await gb.append(queryDatal[l]);

const { keccakQueryResponse, queryHash, query } = await gb.build();

Build Query | | Submit Query | | Wait for Proof | | Parse Proof | | Validate Proof

Building a Query

e C(Create a new QueryBuilder object by calling newQueryBuilder on the Axiom
instance, then append data to it:

example.ts |

const queryData = [
{
blockNumber: 6120000,
address: "0Oxd8da6bf26964af9d7eed9e03e53415d37aa96045", // vitalik.eth
b {
blockNumber: 10430000,
address: "0xd8dabbf26964af9d7eed9e03e53415d37aa96045", // replace both of these with your address
}
13

const gb = ax.newQueryBuilder();

await gb.append(queryDatal[0]);

await gb.append(queryDatal[l]);

const { keccakQueryResponse, queryHash, query } = await gb.build();

TYPEDEF

export interface QueryRow {
blockNumber: number;
address?: string;
slot?: ethers.BigNumberish;
value?: ethers.BigNumberish;

Submitting a Query

Build Query _ | Wait for Proof | | Parse Proof | | Validate Proof

Call the sendQuery function on the AxiomV1Query contract:

example.ts |

const providerUri = <your_provider_URI (Alchemy, Tenderly, Infura, etc)>;
const provider = new ethers.JsonRpcProvider (providerUri);
const wallet = new ethers.Wallet(process.env.PRIVATE_KEY ?? "" provider);

const axiomV1lQuery = new ethers.Contract(
ax.getAxiomQueryAddress() as string,
ax.getAxiomQueryAbi (),
wallet
)
const txResult = await axiomV1Query.sendQuery (
keccakQueryResponse,
wallet.address,
query,
{ value: ethers.parseEther("0.01") } // Goerli payment amount
)

const txReceipt = await txResult.wait();

AXIOM

Submitting a Query

Build Query _ | Wait for Proof | | Parse Proof | | Validate Proof

Call the sendQuery function on the AxiomV1Query contract:

example.ts |

const providerUri = <your_provider_URI (Alchemy, Tenderly, Infura, etc)>;
const provider = new ethers.JsonRpcProvider (providerUri);
const wallet = new ethers.Wallet(process.env.PRIVATE_KEY ?? "" provider);

const axiomV1Query = new ethers.Contract(
ax.getAxiomQueryAddress() as string,
ax.getAxiomQueryAbi (),

wallet
)3

n X ult = awai xiom uery.sendQuer -
et e, SIS Important: if the

e I keccakQueryResponse has
);{ value: ethers.parseEther("0.01") } // Goerli payment preViOUSIY been Sme|tted tO
const txReceipt = await txResult.wait(); Ax'omV.IQuery then the new

transaction will fail.

AXIOM

Build Query | | Submit Query | | Wait for Proof | | Parse Proof | | Validate Proof

Proof generation

e Oncethe Query is successfully submitted via sendQuery, the Axiom Prover
will generate a proof.

e Oncethe proofis generated, the Prover will write the status to the
AxiomV1Query contract, which will emit the following event:

EVENT |

event QueryFulfilled(bytes32 keccakQueryResponse, uint256 payment, address prover);

Build Query

| | Submit Query | | Wait for Proof | |

Parse Proof

| | Validate Proof

Preparing the proof data

After the proof is generated, get the ResponseTree struct and build it into the

format that’s required for Axiom’s on-chain verifier:

example.ts |

const responseTree = await ax.query
.getResponseTreeForKeccakQueryResponse (<your keccakQueryResponse>);

const responses = {
responseTree.blockTree.getHexRoot (),
responseTree.accountTree.getHexRoot(),
responseTree.storageTree.getHexRoot(),
blockResponses: [] as SolidityBlockResponse[],
accountResponses: [] as SolidityAccountResponse[],
storageResponses: [] as SolidityStorageResponsel[],

}s

for (let i = 0; i < queryData.length; i++) {
const witness: ValidationWitnessResponse = ax.query.getValidationWitness(
responseTree,
queryDatal[i].blockNumber,
queryDatal[i].address

) as ValidationWitnessResponse;

if (witness.accountResponse) {
responses.accountResponses.push(witness.accountResponse) ;

}

Build Query | | Submit Query | | Wait for Proof | | Parse Proof | | Validate Proof

Preparing the proof data

e After the proofis generated, get the ResponseTree struct and build it into the
format that’s required for Axiom’s on-chain verifier:

example.ts |

const responseTree = await ax.query
.getResponseTreeForKeccakQueryResponse (<your keccakQueryResponse>);
const responses = {
responseTree.blockTree.getHexRoot (),
responseTree.accountTree.getHexRoot(),

responseTree.storageTree.getHexRoot (), We Wa nt tO use the

blockResponses: [] as SolidityBlockResponse[],

accountResponses: [] as SolidityAccountResponse[], ResponseTree’S

storageResponses: [] as SolidityStorageResponsel[], .
b AccountResponse since we are
for (let i = 0; i < queryData.length; i++) { .
const witness: ValidationWitnessResponse = ax.query.get |00k|nq at account data (nonce)
responseTree,
queryData[i].blockNumber,
queryData[i].address
) as ValidationWitnessResponse;
if (witness.accountResponse) {
responses.accountResponses.push(witness.accountResponse) ;

}

Build Query | | Submit Query | | Wait for Proof | _ Validate Proof

Proof data review

block n

BlockResponse

Build Query | | Submit Query | | Wait for Proof | _ Validate Proof

Proof data review

AccountResponse

account 0x1234

Build Query | | Submit Query | | Wait for Proof | _ Validate Proof

Proof data review

StorageResponse

| Build Query | | Submit Query | | Wait for Proof | | Parse Proof | _

Using the proof in your contract

e Create a struct with the Responses that we will pass proof data to

Distributor.sol |

struct ResponseStruct {
bytes32 keccakBlockResponse;
bytes32 keccakAccountResponse;
bytes32 keccakStorageResponse;
IAxiomV1Query.BlockResponse[] blockResponses;
IAxiomV1Query.AccountResponse[] accountResponses;
IAxiomV1Query.StorageResponse[] storageResponses;

}

function _validateData(ResponseStruct calldata response) private view returns (bool) {

}

function mint(ResponseStruct calldata response) external {
// Validates the incoming ResponseStruct
_validateData(response);

// Mints a new NFT to the sender if dinput validation passes
_safeMint(msg.sender, totalSupply());
}

AXIOM

Using the proof in your contract

| Build Query | | Submit Query | | Wait for Proof | |

Parse Proof

| | Validate Proof

Validate the proof with areResponsesValid on AxiomV1Query:

Distributor.sol |

function _validateData(ResponseStruct calldata response) private view returns (bool) {
// Mainnet AxiomV1Query address
IAxiomV1Query axiomV1Query = IAxiomV1Query (AXIOM_V1_QUERY_MAINNET_ADDR) ;
// Check that the responses are valid
bool valid = axiomV1Query.areResponsesValid/(
response.keccakBlockResponse,
response.keccakAccountResponse,
response.keccakStorageResponse,
response.blockResponses,
response.accountResponses,
response.storageResponses
)3
if (lvalid) {
revert ProofError();

}

// Decode the query metadata
uint256 length = response.accountResponses.length;
if (length != 2) {
revert InvalidDatalLengthError();
}

Using the proof in your contract

| Build Query | | Submit Query | | Wait for Proof

| o) [

Distributor.sol |

}

function _validateData(ResponseStruct calldata response) private view returns (bool) {

// Get values from start block

uint256 startBlockNumber = response.blockResponses[0].blockNumber;
uint256 startNonce = response.accountResponses[0].nonce;

address startAddr = response.accountResponses[0].addr;

// Get values from end block

uint256 endBlockNumber = response.blockResponses[1].blockNumber;
uint256 endNonce = response.accountResponses[1l].nonce;

address endAddr = response.accountResponses[1l].addr;

// Check that the start and end blocks proved match the values set in the contract
if (startBlockNumber != BEAR_START_BLOCK || endBlockNumber != BEAR_END_BLOCK) {
revert InvalidInputError();

}

// Check that the account nonce at the end of the bear market is a set threshold above the

// account nonce at the start of the bear market, since it acts as a transaction counter
if (endNonce - startNonce < NUM_TX_THRESHOLD) {
revert NotEnoughTransactionsError();

}

// Check that the proof submitted is for the same address that is submitting the transaction

if (startAddr != msg.sender || endAddr != msg.sender) {
revert InvalidSenderError();

}

AXIOM

App ideas with Axiom

B

R

Identity and Governance
Autonomous airdrops
On-chain loyalty systems (volume rebates)
History-based gating

Trustless Oracles
Historic Uniswap LP share pricing
Maker health factor oracle
Settlement for derivatives (gas price)
NFT transacted floor price

o =

gwon 4 ;
vpark@2

Building some 1p Hooks using @/

0Old Account: only accounts of age >= X can swap
LP Fee Rebate: LPs get lower fees on pools they're providing liquidity
KYC: only KYC'ed users can trade

Untested, in dev!
kevincharm & @kevincharm - 12h

poc: access randao (consensus-layer randomness) from any historical
block using 's blockhash cache
t=1

kevincharm/randao- T
accessor a

App ideas with Axiom

83 On-chain Accountability
e Proof of sandwich ;
e Proof of Sharpe) st s orws sor - 55
e On-chain insurance settlement
e Proof of transaction order within a block

On-chain Async Calls
e Algorithmic parameter adjustments in DeFi
e Trustless off-chain auction clearing

https://emojiterra.com/telephone-emoji/

App ideas with Axiom

@ On-chain Reputation

e Proof of Whale <¥
o Prove you owned at least 5 of an NFT collection before
o Prove your account owned [>X] of a token
o Prove you have burned at least 100 ETH in gas
e Uniswap volume oracle
o Prove you traded at least X volume on a Uniswap pool

e Farmer badges @ﬂ
o Prove you were an OG Yam & farmer

Or a creative idea from you!

The ZK proofs behind Axiom

What operations do we need?

Parsing RLP

Serialization

|

Merkle-Patricia
Trie Inclusion

|

|

Recursion and
Aggregation

|

All data in Ethereum is serialized with:
RLP = Recursive Length Prefix

RLP is a method to serialize arbitrary nested bytearrays
e The serialization is recursive.
e Each RLP-serialized piece of data has a prefix byte
and optional length bytes prepended to the data.
e These bytes determine the length of the next field.

What operations do we need?

Parsing RLP
Serialization

|

Merkle-Patricia
Trie Inclusion

|

|

Recursion and
Aggregation

|

Key ZK primitives: variable-length array manipulation
e Indexinginto an array
e Selecting a variable length subarray
e Concatenation of variable length arrays

Key arithmetization idea: Random Linear Combination
e After committing to arrays alil, b[il, draw
randomness r, and encode by

RLC(a[il, r) := (len(a), a[k] r*' + a[k-1] r*-2 + ... + a[0]

e If RLC(a[il, r) = RLC(b[i], r),thena =Db.

What operations do we need?

|

Parsing RLP
Serialization

|

Merkle-Patricia

Trie Inclusion

|

Recursion and
Aggregation

|

Data in Ethereum is committed to in:

MPT = Merkle Patricia Trie
This is a 16-ary trie where each node is RLP encoded.
Key ZK primitives:

e Keccak hash (expensive!)
e RLC for subarray checks

What operations do we need?

|

Parsing RLP
Serialization

|

|

Merkle-Patricia
Trie Inclusion

|

Recursion and

Aggregation

Combine block header and MPT proofs with aggregation.
Given proofs pi,, pi,, ..., pi , we create a recursive verifier:

pi: all of pi,, pi, ..., pi_hold

Key ZK primitives:
e Non-native elliptic curve arithmetic
e Multi-scalar multiplication
e (Optionally) elliptic curve pairing verification

How do we build these primitives?

We use halo2 with KZG backend (PSE fork) with a modular setup:

basic gadgets with

convenient interface

[halo2-ecc } E axiom-eth }

Big integer and elliptic Keccak, RLP, MPT,
curve arithmetic and Ethereum reads

How do we build these primitives?

: Keccak hash
Basic gadgets h
2- zkevm-k k
with easy AP alo2-base [e ecca } from zkEVM

Big integer and
[axiom-eth }

elliptic curve }
Keccak, RLP, MPT,

halo2-ecc

arithmetic
and Ethereum reads

Recursive and
EVM verifier
from PSE

snark-verifier

|
|

halo2-base: Vertical Gate

Cheap Verifier Setting:
e 1advice,1lookup table, 1 constant, 2 selector columns
e 1lcustomgate:a+b*c=d

Overlap Optimization:
e Example: Dot product of (1, 3) with (2, 4)
e Length N dot product uses 3 N + 1instead of 4 N cells

AXIOM

halo2-base: Configurable Prover-Verifier Tradeoff

Give desired number of advice and fixed columns:
e Allocate basic gates evenly across columns
e Library of basic gadgets in this form:

o Inner product

Range check

Index into array

Bitwise operations

Comparison operators

O O O O

We found it difficult to outperform the basic gate using more custom gates.

AXIOM

halo2-base: Shared Lookup Arguments

Previously: Enable lookup arguments on every advice column.

Optimization: Copy lookup values to special advice columns with lookup enabled
e User-specified number of special advice columns
e Allocate lookup values to special advice columns evenly
e Gives ~50pct proving speed improvement

Our Vision

ZK coprocessing with Axiom today

h\ 4

Wt
LY

h\ 4

W,
Ny,
el

y/ W
h\
{% P/ N V/ N

4; Trustless reads to historic Compute via
\/ block headers, accounts, custom ZK circuits
account storage,
transactions, and receipts

Our vision for ZK coprocessing with Axiom

h\ 4

t Ve : H
4Em mm mm) ¢
A4 Sy N 2 A4

t) N L) t
4; Trustless reads to all View function Arbitrary compute 4;
\/ historic on-chain data simulation via via ZK-native VM \(

zkEVM proofs

ZK Archive Node and Indexer

AXIOM

The ZK Coprocessor for Ethereum, live on mainnet today!

Start building with Axiom
docs.axiom.xyz

Code examples

github.com/axiom-crypto/examples

We empower developers to build a new class of data-rich applications

combining the rich interactions of traditional webapps with the security of
Ethereum.

