
Scaling data-rich applications on Ethereum with Axiom

Smart contracts today are data-starved

Current contract state Historical transaction and state

To preserve decentralization, smart contracts today cannot access history

Developers face painful data tradeoffs

● Store more data in state
● Imposes costs on every user
● Limited scale due to gas costs

● Use trusted oracle
● Introduces additional trust

assumptions on users
● Limited scale due to verification

of trust assumptions

Scaling on-chain data access today increases cost or reduces security

Pay more 🤑 Reduce security 🤡

How do we scale data access and compute for
smart contracts in an application-specific way?

Blockchains offer a new way to access data

We can access on-chain history with cryptography, not consensus

Current BlockPast Block

Ethereum state,
transactions,

receipts

How does cryptographic data access work?

Accessing history natively in the EVM is prohibitively expensive

Current BlockPast Block

Ethereum state,
transactions,

receipts

Keccak chain of
block headers

Merkle-Patricia
trie proof

Axiom makes historic data access practical with ZK

Proving data reads in ZK enables scale and composition

Current BlockPast Block

Ethereum state,
transactions,

receipts

Keccak chain of
block headers

Merkle-Patricia
trie proof

Check in ZK proof

Axiom: The ZK Coprocessor for Ethereum

Submit query from
smart contract

Verify result on-chain
with ZK proof

Read historic
on-chain data

Perform verified
compute

Every result from Axiom has security
cryptographically equivalent to Ethereum

Perform verified
compute

Submit query from
smart contract

Verify result on-chain
with ZK proof

Axiom enables arbitrary on-chain async calls

Read historic
on-chain data

Trustlessly interoperate with existing dapps

Submit query from
smart contract

Verify result on-chain
with ZK proof

Read historic
on-chain data

Axiom enables arbitrary on-chain async calls

Perform verified
compute

Compute without blockchain VM limits

How Axiom Works

Axiom’s architecture for reading on-chain history

We cache block hashes back to genesis in a Merkle mountain range

Current BlockMerkle mountain range
of all block hashes

Ethereum state,
transactions, receipts

Merkle-Patricia
trie proofs

https://www.axiom.xyz/blog/alpha

Keccak chain of
block headers

Maintain with ZK

Aggregating Historical Block Headers

Header Header Header Header Header Header Header Header Header

Axiom ZKP

Aggregating Historical Block Headers

128
Headers

128
Headers

128
Headers

128
Headers

128
Headers

128
Headers

128
Headers

128
Headers

ZKP ZKP ZKP ZKP

ZKP ZKP

Axiom ZKP for EVM

Parallelize:

Axiom’s architecture for reading on-chain history

Axiom can prove any combination of blocks, addresses, and storage slots.

Current BlockMerkle mountain range
of all block hashes

Ethereum state,
transactions, receipts

Merkle-Patricia
trie proofs

https://www.axiom.xyz/blog/alpha

Prove with ZK

What data does Axiom prove?

block n-1block n-2 block n+2block n+1

block n

stateRoot

blockHash
blockNumber

transactionsRoot
receiptsRoot

mainnet alpha

experimental build

account
0x0002

account
0x0003

account
0x0001

account 0x1234

balance

address
nonce codeHash

storageRoot

slot 0
0x80

slot 1
0xff

slot 2
0x00

slot 3
0xbe

block n+3

Axiom for Developers

● To prove data that we'll eventually use in a contract, we first use the SDK to
build a Query which contains all of the different pieces of data that we want
to prove.

● Install @axiom-crypto/core and other useful packages:

Installation

npm i @axiom-crypto/core ethers

NPM

yarn add @axiom-crypto/core ethers

YARN

pnpm i @axiom-crypto/core ethers

PNPM

Block Data
● block number
● block hash
● transactions root

(experimental)
● receipts root

(experimental)

What can we prove?

Account Data
● block number
● address
● nonce
● balance
● storage root
● code hash

Storage Data
● block number
● address
● slot number
● slot value

Transaction Data
● nonce
● maxPriorityFeePerGas
● maxFeePerGas
● gasLimit
● to
● value
● data
● v, r, s

What can we prove? (Experimental)

Receipt Data
● status
● cumulativeGas
● logsBloom
● logs

○ address
○ topics
○ data

interface IERC20 {
 event Approval(address indexed owner, address indexed spender, uint value);
 event Transfer(address indexed from, address indexed to, uint value);
 ...
}

IERC20.sol

● Install @axiom-crypto/experimental with your favorite package manager

● I want to create a contract that checks that a user was “active” during the
previous bear market and if so, let them mint an NFT:
○ Our custom “bear market”: period of low activity and prices between Aug

10, 2018 (block 6120000) to July 10, 2020 (block 10430000)
● Use an account proof to check the difference in an account's nonce at two

different block numbers

An example

● Create a config object and create a new Axiom instance from it:

Setup

import { Axiom, AxiomConfig } from '@axiom-crypto/core';
import { ethers } from 'ethers';

const config: AxiomConfig = {
 providerUri,
 version: "v1",
 chainId: 5,
 mock: true,
};
const ax = new Axiom(config);

example.ts

Overview of steps

Build Query
(Typescript SDK)

Submit Query
(ethers.js) Wait for Proof Parse Proof

(Typescript SDK)
Validate Proof

(Solidity)

● Create a new QueryBuilder object by calling newQueryBuilder on the Axiom
instance, then append data to it:

Building a Query
Build Query Submit Query Wait for Proof Parse Proof Validate Proof

const queryData = [
 {
 blockNumber: 6120000,
 address: "0xd8da6bf26964af9d7eed9e03e53415d37aa96045", // vitalik.eth
 }, {
 blockNumber: 10430000,
 address: "0xd8da6bf26964af9d7eed9e03e53415d37aa96045", // replace both of these with your address
 }
];

const qb = ax.newQueryBuilder();
await qb.append(queryData[0]);
await qb.append(queryData[1]);
const { keccakQueryResponse, queryHash, query } = await qb.build();

example.ts

● Create a new QueryBuilder object by calling newQueryBuilder on the Axiom
instance, then append data to it:

Building a Query

const queryData = [
 {
 blockNumber: 6120000,
 address: "0xd8da6bf26964af9d7eed9e03e53415d37aa96045", // vitalik.eth
 }, {
 blockNumber: 10430000,
 address: "0xd8da6bf26964af9d7eed9e03e53415d37aa96045", // replace both of these with your address
 }
];

const qb = ax.newQueryBuilder();
await qb.append(queryData[0]);
await qb.append(queryData[1]);
const { keccakQueryResponse, queryHash, query } = await qb.build();

example.ts

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

export interface QueryRow {
 blockNumber: number;
 address?: string;
 slot?: ethers.BigNumberish;
 value?: ethers.BigNumberish;
}

TYPEDEF

● Call the sendQuery function on the AxiomV1Query contract:

Submitting a Query

const providerUri = <your_provider_URI (Alchemy, Tenderly, Infura, etc)>;
const provider = new ethers.JsonRpcProvider(providerUri);
const wallet = new ethers.Wallet(process.env.PRIVATE_KEY ?? "", provider);

const axiomV1Query = new ethers.Contract(
 ax.getAxiomQueryAddress() as string,
 ax.getAxiomQueryAbi(),
 wallet
);
const txResult = await axiomV1Query.sendQuery(
 keccakQueryResponse,
 wallet.address,
 query,
 { value: ethers.parseEther("0.01") } // Goerli payment amount
);
const txReceipt = await txResult.wait();

example.ts

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

● Call the sendQuery function on the AxiomV1Query contract:

Submitting a Query

const providerUri = <your_provider_URI (Alchemy, Tenderly, Infura, etc)>;
const provider = new ethers.JsonRpcProvider(providerUri);
const wallet = new ethers.Wallet(process.env.PRIVATE_KEY ?? "", provider);

const axiomV1Query = new ethers.Contract(
 ax.getAxiomQueryAddress() as string,
 ax.getAxiomQueryAbi(),
 wallet
);
const txResult = await axiomV1Query.sendQuery(
 keccakQueryResponse,
 wallet.address,
 query,
 { value: ethers.parseEther("0.01") } // Goerli payment amount
);
const txReceipt = await txResult.wait();

example.ts

Important: if the
keccakQueryResponse has
previously been submitted to
AxiomV1Query, then the new
transaction will fail.

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

● Once the Query is successfully submitted via sendQuery, the Axiom Prover
will generate a proof.

● Once the proof is generated, the Prover will write the status to the
AxiomV1Query contract, which will emit the following event:

Proof generation

event QueryFulfilled(bytes32 keccakQueryResponse, uint256 payment, address prover);

EVENT

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

● After the proof is generated, get the ResponseTree struct and build it into the
format that’s required for Axiom’s on-chain verifier:

Preparing the proof data

const responseTree = await ax.query
 .getResponseTreeForKeccakQueryResponse(<your keccakQueryResponse>);
const responses = {
 responseTree.blockTree.getHexRoot(),
 responseTree.accountTree.getHexRoot(),
 responseTree.storageTree.getHexRoot(),
 blockResponses: [] as SolidityBlockResponse[],
 accountResponses: [] as SolidityAccountResponse[],
 storageResponses: [] as SolidityStorageResponse[],
};
for (let i = 0; i < queryData.length; i++) {
 const witness: ValidationWitnessResponse = ax.query.getValidationWitness(
 responseTree,
 queryData[i].blockNumber,
 queryData[i].address
) as ValidationWitnessResponse;
if (witness.accountResponse) {
 responses.accountResponses.push(witness.accountResponse);
}

example.ts

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

const responseTree = await ax.query
 .getResponseTreeForKeccakQueryResponse(<your keccakQueryResponse>);
const responses = {
 responseTree.blockTree.getHexRoot(),
 responseTree.accountTree.getHexRoot(),
 responseTree.storageTree.getHexRoot(),
 blockResponses: [] as SolidityBlockResponse[],
 accountResponses: [] as SolidityAccountResponse[],
 storageResponses: [] as SolidityStorageResponse[],
};
for (let i = 0; i < queryData.length; i++) {
 const witness: ValidationWitnessResponse = ax.query.getValidationWitness(
 responseTree,
 queryData[i].blockNumber,
 queryData[i].address
) as ValidationWitnessResponse;
if (witness.accountResponse) {
 responses.accountResponses.push(witness.accountResponse);
}

● After the proof is generated, get the ResponseTree struct and build it into the
format that’s required for Axiom’s on-chain verifier:

Preparing the proof data

example.ts

We want to use the
ResponseTree’s
AccountResponse since we are
looking at account data (nonce)

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

block n-1block n-2 block n+2block n+1

current

experimental build

account
0x0002

account
0x0003

account
0x0001

account 0x1234

balance

address
nonce codeHash

storageRoot

slot 0
0x80

slot 1
0xff

slot 2
0x00

slot 3
0xbe

block n+3

block n

stateRoot

blockHash
blockNumber

transactionsRoot
receiptsRoot

Proof data review

BlockResponse

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

block n-1block n-2 block n+2block n+1

current

experimental build

account
0x0002

account
0x0003

account
0x0001

block n

stateRoot

blockHash
blockNumber

transactionsRoot
receiptsRoot

slot 0
0x80

slot 1
0xff

slot 2
0x00

slot 3
0xbe

block n+3

Proof data review

AccountResponse
account 0x1234

balance

address
nonce codeHash

storageRoot

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

account 0x1234

balance

address
nonce codeHash

storageRoot

block n-1block n-2 block n+2block n+1

current

experimental build

account
0x0002

account
0x0003

account
0x0001

block n

stateRoot

blockHash
blockNumber

transactionsRoot
receiptsRoot

block n+3

Proof data review

StorageResponse
slot 0
0x80

slot 1
0xff

slot 2
0x00

slot 3
0xbe

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

● Create a struct with the Responses that we will pass proof data to

Using the proof in your contract

struct ResponseStruct {
 bytes32 keccakBlockResponse;
 bytes32 keccakAccountResponse;
 bytes32 keccakStorageResponse;
 IAxiomV1Query.BlockResponse[] blockResponses;
 IAxiomV1Query.AccountResponse[] accountResponses;
 IAxiomV1Query.StorageResponse[] storageResponses;
}

function _validateData(ResponseStruct calldata response) private view returns (bool) {
 ...
}

function mint(ResponseStruct calldata response) external {
 // Validates the incoming ResponseStruct
 _validateData(response);

 // Mints a new NFT to the sender if input validation passes
 _safeMint(msg.sender, totalSupply());
}

Distributor.sol

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

● Validate the proof with areResponsesValid on AxiomV1Query:

Using the proof in your contract

function _validateData(ResponseStruct calldata response) private view returns (bool) {
 // Mainnet AxiomV1Query address
 IAxiomV1Query axiomV1Query = IAxiomV1Query(AXIOM_V1_QUERY_MAINNET_ADDR);
 // Check that the responses are valid
 bool valid = axiomV1Query.areResponsesValid(
 response.keccakBlockResponse,
 response.keccakAccountResponse,
 response.keccakStorageResponse,
 response.blockResponses,
 response.accountResponses,
 response.storageResponses
);
 if (!valid) {
 revert ProofError();
 }

 // Decode the query metadata
 uint256 length = response.accountResponses.length;
 if (length != 2) {
 revert InvalidDataLengthError();
 }
 ...

Distributor.sol

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

Using the proof in your contract

function _validateData(ResponseStruct calldata response) private view returns (bool) {
 ...
 // Get values from start block
 uint256 startBlockNumber = response.blockResponses[0].blockNumber;
 uint256 startNonce = response.accountResponses[0].nonce;
 address startAddr = response.accountResponses[0].addr;

 // Get values from end block
 uint256 endBlockNumber = response.blockResponses[1].blockNumber;
 uint256 endNonce = response.accountResponses[1].nonce;
 address endAddr = response.accountResponses[1].addr;

 // Check that the start and end blocks proved match the values set in the contract
 if (startBlockNumber != BEAR_START_BLOCK || endBlockNumber != BEAR_END_BLOCK) {
 revert InvalidInputError();
 }

 // Check that the account nonce at the end of the bear market is a set threshold above the
 // account nonce at the start of the bear market, since it acts as a transaction counter
 if (endNonce - startNonce < NUM_TX_THRESHOLD) {
 revert NotEnoughTransactionsError();
 }

 // Check that the proof submitted is for the same address that is submitting the transaction
 if (startAddr != msg.sender || endAddr != msg.sender) {
 revert InvalidSenderError();
 }
}

Distributor.sol

Build Query Submit Query Wait for Proof Parse Proof Validate Proof

App ideas with Axiom

📜 Identity and Governance
● Autonomous airdrops
● On-chain loyalty systems (volume rebates)
● History-based gating

🔮 Trustless Oracles
● Historic Uniswap LP share pricing
● Maker health factor oracle
● Settlement for derivatives (gas price)
● NFT transacted floor price

App ideas with Axiom

⛓ On-chain Accountability
● Proof of sandwich
● Proof of Sharpe
● On-chain insurance settlement
● Proof of transaction order within a block

☎ On-chain Async Calls
● Algorithmic parameter adjustments in DeFi
● Trustless off-chain auction clearing

https://emojiterra.com/telephone-emoji/

App ideas with Axiom

😊 On-chain Reputation
● Proof of Whale 🐳

○ Prove you owned at least 5 of an NFT collection before
○ Prove your account owned [>X] of a token
○ Prove you have burned at least 100 ETH in gas

● Uniswap volume oracle
○ Prove you traded at least X volume on a Uniswap pool

● Farmer badges 󰳎
○ Prove you were an OG Yam 🍠 farmer

Or a creative idea from you!

The ZK proofs behind Axiom

What operations do we need?

All data in Ethereum is serialized with:

RLP = Recursive Length Prefix

RLP is a method to serialize arbitrary nested bytearrays
● The serialization is recursive.
● Each RLP-serialized piece of data has a prefix byte

and optional length bytes prepended to the data.
● These bytes determine the length of the next field.

Recursion and
Aggregation

Parsing RLP
Serialization

Merkle-Patricia
Trie Inclusion

What operations do we need?

Key ZK primitives: variable-length array manipulation
● Indexing into an array
● Selecting a variable length subarray
● Concatenation of variable length arrays

Key arithmetization idea: Random Linear Combination
● After committing to arrays a[i], b[i], draw

randomness r, and encode by

RLC(a[i], r) := (len(a), a[k] rk-1 + a[k-1] rk - 2 + … + a[0]

● If RLC(a[i], r) = RLC(b[i], r), then a = b.

Recursion and
Aggregation

Parsing RLP
Serialization

Merkle-Patricia
Trie Inclusion

What operations do we need?

Data in Ethereum is committed to in:

MPT = Merkle Patricia Trie

This is a 16-ary trie where each node is RLP encoded.

Key ZK primitives:
● Keccak hash (expensive!)
● RLC for subarray checks

Recursion and
Aggregation

Parsing RLP
Serialization

Merkle-Patricia
Trie Inclusion

What operations do we need?

Combine block header and MPT proofs with aggregation.
Given proofs pi1, pi2, …, pin, we create a recursive verifier:

pi: all of pi1, pi2, …, pin hold

Key ZK primitives:
● Non-native elliptic curve arithmetic
● Multi-scalar multiplication
● (Optionally) elliptic curve pairing verification

Parsing RLP
Serialization

Recursion and
Aggregation

Merkle-Patricia
Trie Inclusion

How do we build these primitives?

We use halo2 with KZG backend (PSE fork) with a modular setup:

halo2-base

halo2-ecc axiom-eth

basic gadgets with
convenient interface

Big integer and elliptic
curve arithmetic

Keccak, RLP, MPT,
and Ethereum reads

How do we build these primitives?

halo2-base

halo2-ecc axiom-eth

Basic gadgets
with easy API

Big integer and
elliptic curve

arithmetic

Keccak, RLP, MPT,
and Ethereum reads

zkevm-keccak
Keccak hash
from zkEVM

snark-verifier
Recursive and
EVM verifier

from PSE

halo2-base: Vertical Gate

Cheap Verifier Setting:
● 1 advice, 1 lookup table, 1 constant, 2 selector columns
● 1 custom gate: a + b * c = d

Overlap Optimization:
● Example: Dot product of (1, 3) with (2, 4)
● Length N dot product uses 3 N + 1 instead of 4 N cells

0 1

1 0

2 0

2 1

3 0

4 0

14 0

halo2-base: Configurable Prover-Verifier Tradeoff

Give desired number of advice and fixed columns:
● Allocate basic gates evenly across columns
● Library of basic gadgets in this form:

○ Inner product
○ Range check
○ Index into array
○ Bitwise operations
○ Comparison operators

We found it difficult to outperform the basic gate using more custom gates.

halo2-base: Shared Lookup Arguments

Previously: Enable lookup arguments on every advice column.

Optimization: Copy lookup values to special advice columns with lookup enabled
● User-specified number of special advice columns
● Allocate lookup values to special advice columns evenly
● Gives ~50pct proving speed improvement

Our Vision

ZK coprocessing with Axiom today

Trustless reads to historic
block headers, accounts,

account storage,
transactions, and receipts

Compute via
custom ZK circuits

Our vision for ZK coprocessing with Axiom

View function
simulation via
zkEVM proofs

Arbitrary compute
via ZK-native VM

Trustless reads to all
historic on-chain data

ZK Archive Node and Indexer

The ZK Coprocessor for Ethereum, live on mainnet today!

Start building with Axiom

docs.axiom.xyz
Code examples

github.com/axiom-crypto/examples
We empower developers to build a new class of data-rich applications
combining the rich interactions of traditional webapps with the security of
Ethereum.

